20 8 / 2014

neurosciencestuff:

Physically fit kids have beefier brain white matter than their less-fit peers
A new study of 9- and 10-year-olds finds that those who are more aerobically fit have more fibrous and compact white-matter tracts in the brain than their peers who are less fit. “White matter” describes the bundles of axons that carry nerve signals from one brain region to another. More compact white matter is associated with faster and more efficient nerve activity.
The team reports its findings in the open-access journal Frontiers in Human Neuroscience.
“Previous studies suggest that children with higher levels of aerobic fitness show greater brain volumes in gray-matter brain regions important for memory and learning,” said University of Illinois postdoctoral researcher Laura Chaddock-Heyman, who conducted the study with kinesiology and community health professor Charles Hillman and psychology professor and Beckman Institute director Arthur Kramer. “Now for the first time we explored how aerobic fitness relates to white matter in children’s brains.”
The team used diffusion tensor imaging (DTI, also called diffusion MRI) to look at five white-matter tracts in the brains of the 24 participants. This method analyzes water diffusion into tissues. For white matter, less water diffusion means the tissue is more fibrous and compact, both desirable traits.
The researchers controlled for several variables – such as social and economic status, the timing of puberty, IQ, or a diagnosis of ADHD or other learning disabilities – that might have contributed to the reported fitness differences in the brain.
The analysis revealed significant fitness-related differences in the integrity of several white-matter tracts in the brain: the corpus callosum, which connects the brain’s left and right hemispheres; the superior longitudinal fasciculus, a pair of structures that connect the frontal and parietal lobes; and the superior corona radiata, which connect the cerebral cortex to the brain stem.  “All of these tracts have been found to play a role in attention and memory,” Chaddock-Heyman said.
The team did not test for cognitive differences in the children in this study, but previous work has demonstrated a link between improved aerobic fitness and gains in cognitive function on specific tasks and in academic settings.
“Previous studies in our lab have reported a relationship between fitness and white-matter integrity in older adults,” Kramer said. “Therefore, it appears that fitness may have beneficial effects on white matter throughout the lifespan.”
To take the findings further, the team is now two years into a five-year randomized, controlled trial to determine whether white-matter tract integrity improves in children who begin a new physical fitness routine and maintain it over time. The researchers are looking for changes in aerobic fitness, brain structure and function, and genetic regulation.
“Prior work from our laboratories has demonstrated both short- and long-term differences in the relation of aerobic fitness to brain health and cognition,” Hillman said. “However, our current randomized, controlled trial should provide the most comprehensive assessment of this relationship to date.”
The new findings add to the evidence that aerobic exercise changes the brain in ways that improve cognitive function, Chaddock-Heyman said.
“This study extends our previous work and suggests that white-matter structure may be one additional mechanism by which higher-fit children outperform their lower-fit peers on cognitive tasks and in the classroom,” she said.

neurosciencestuff:

Physically fit kids have beefier brain white matter than their less-fit peers

A new study of 9- and 10-year-olds finds that those who are more aerobically fit have more fibrous and compact white-matter tracts in the brain than their peers who are less fit. “White matter” describes the bundles of axons that carry nerve signals from one brain region to another. More compact white matter is associated with faster and more efficient nerve activity.

The team reports its findings in the open-access journal Frontiers in Human Neuroscience.

“Previous studies suggest that children with higher levels of aerobic fitness show greater brain volumes in gray-matter brain regions important for memory and learning,” said University of Illinois postdoctoral researcher Laura Chaddock-Heyman, who conducted the study with kinesiology and community health professor Charles Hillman and psychology professor and Beckman Institute director Arthur Kramer. “Now for the first time we explored how aerobic fitness relates to white matter in children’s brains.”

The team used diffusion tensor imaging (DTI, also called diffusion MRI) to look at five white-matter tracts in the brains of the 24 participants. This method analyzes water diffusion into tissues. For white matter, less water diffusion means the tissue is more fibrous and compact, both desirable traits.

The researchers controlled for several variables – such as social and economic status, the timing of puberty, IQ, or a diagnosis of ADHD or other learning disabilities – that might have contributed to the reported fitness differences in the brain.

The analysis revealed significant fitness-related differences in the integrity of several white-matter tracts in the brain: the corpus callosum, which connects the brain’s left and right hemispheres; the superior longitudinal fasciculus, a pair of structures that connect the frontal and parietal lobes; and the superior corona radiata, which connect the cerebral cortex to the brain stem.
“All of these tracts have been found to play a role in attention and memory,” Chaddock-Heyman said.

The team did not test for cognitive differences in the children in this study, but previous work has demonstrated a link between improved aerobic fitness and gains in cognitive function on specific tasks and in academic settings.

“Previous studies in our lab have reported a relationship between fitness and white-matter integrity in older adults,” Kramer said. “Therefore, it appears that fitness may have beneficial effects on white matter throughout the lifespan.”

To take the findings further, the team is now two years into a five-year randomized, controlled trial to determine whether white-matter tract integrity improves in children who begin a new physical fitness routine and maintain it over time. The researchers are looking for changes in aerobic fitness, brain structure and function, and genetic regulation.

“Prior work from our laboratories has demonstrated both short- and long-term differences in the relation of aerobic fitness to brain health and cognition,” Hillman said. “However, our current randomized, controlled trial should provide the most comprehensive assessment of this relationship to date.”

The new findings add to the evidence that aerobic exercise changes the brain in ways that improve cognitive function, Chaddock-Heyman said.

“This study extends our previous work and suggests that white-matter structure may be one additional mechanism by which higher-fit children outperform their lower-fit peers on cognitive tasks and in the classroom,” she said.

14 8 / 2014

nevver:

Work

yes

14 8 / 2014

14 8 / 2014

14 8 / 2014

What we owe towards changing the world.

What we owe towards changing the world.

14 8 / 2014

I’m reading my feed about Ferguson and a police shooting involving an innocent teen african american teen being shot and killed by police. Racial tensions are a focal point. The energy of the story races across my computer. This is something big!

14 8 / 2014

The Genius Way This Interior Designer Gives Homeless Veterans a New Start
By Colleen Egan, elledecor.com
You’ll never look at your furniture castoffs the same way again.In case you ever question the transformative power of bright throw pillows and a comfy chair, meet Margaret Barnett, an Atlanta-area designer who has been called “Robin Hood of…

I like this service.

The Genius Way This Interior Designer Gives Homeless Veterans a New Start
By Colleen Egan, elledecor.com

You’ll never look at your furniture castoffs the same way again.

In case you ever question the transformative power of bright throw pillows and a comfy chair, meet Margaret Barnett, an Atlanta-area designer who has been called “Robin Hood of…

I like this service.

06 8 / 2014

Today at our weekly Wednesday meeting at 60 plus veterans group we had the pleasure of having the Sherif of Suffolk County speak, Sherif Tompkins. I have to say I don’t really follow law enforcement so I was foreign to his reputation or work.

He comes across as a good communicator and I felt the type A personality of a person who has the job of Sherif. He spoke very forth right about race, the process of being a Sherif and the culture of law enforcement in Boston for the last 250 years. I think I may start paying attention to the law enforcement part of state policies and politics.

26 7 / 2014

neurosciencestuff:

Early life experiences, such as childhood socioeconomic status and literacy, may have greater influence on the risk of cognitive impairment late in life than such demographic characteristics as race and ethnicity, a large study by researchers with the UC Davis Alzheimer’s Disease Center and the…

I want to be involved in this research as I assist in developing a program for the 60 plus veterans group.

(Source: ucdmc.ucdavis.edu)

15 7 / 2014

neurosciencestuff:

Smell and eye tests show potential to detect Alzheimer’s early
A decreased ability to identify odors might indicate the development of cognitive impairment and Alzheimer’s disease, while examinations of the eye could indicate the build-up of beta-amyloid, a protein associated with Alzheimer’s, in the brain, according to the results of four research trials reported today at the Alzheimer’s Association International Conference® 2014 (AAIC® 2014) in Copenhagen.
In two of the studies, the decreased ability to identify odors was significantly associated with loss of brain cell function and progression to Alzheimer’s disease. In two other studies, the level of beta-amyloid detected in the eye (a) was significantly correlated with the burden of beta-amyloid in the brain and (b) allowed researchers to accurately identify the people with Alzheimer’s in the studies.
Beta-amyloid protein is the primary material found in the sticky brain “plaques” characteristic of Alzheimer’s disease. It is known to build up in the brain many years before typical Alzheimer’s symptoms of memory loss and other cognitive problems.
"In the face of the growing worldwide Alzheimer’s disease epidemic, there is a pressing need for simple, less invasive diagnostic tests that will identify the risk of Alzheimer’s much earlier in the disease process," said Heather Snyder, Ph.D., Alzheimer’s Association director of Medical and Scientific Operations. "This is especially true as Alzheimer’s researchers move treatment and prevention trials earlier in the course of the disease."
"More research is needed in the very promising area of Alzheimer’s biomarkers because early detection is essential for early intervention and prevention, when new treatments become available. For now, these four studies reported at AAIC point to possible methods of early detection in a research setting to choose study populations for clinical trials of Alzheimer’s treatments and preventions," Snyder said.
With the support of the Alzheimer’s Association and the Alzheimer’s community, the United States created its first National Plan to Address Alzheimer’s Disease in 2012. The plan includes the critical goal, which was adopted by the G8 at the Dementia Summit in 2013, of preventing and effectively treating Alzheimer’s by 2025. It is only through strong implementation and adequate funding of the plan, including an additional $200 million in fiscal year 2015 for Alzheimer’s research, that we’ll meet that goal. For more information and to get involved, visit http://www.alz.org.
Clinically, at this time it is only possible to detect Alzheimer’s late in its development, when significant brain damage has already occurred. Biological markers of Alzheimer’s disease may be able to detect it at an earlier stage. For example, using brain PET imaging in conjunction with a specialized chemical that binds to beta-amyloid protein, the buildup of the protein as plaques in the brain can be revealed years before symptoms appear. These scans can be expensive and are not available everywhere. Amyloid can also be detected in cerebrospinal fluid through a lumbar puncture where a needle is inserted between two bones (vertebrae) in your lower back to remove a sample of the fluid that surrounds your brain and spinal cord.
Read more
(Image: Getty Images)

neurosciencestuff:

Smell and eye tests show potential to detect Alzheimer’s early

A decreased ability to identify odors might indicate the development of cognitive impairment and Alzheimer’s disease, while examinations of the eye could indicate the build-up of beta-amyloid, a protein associated with Alzheimer’s, in the brain, according to the results of four research trials reported today at the Alzheimer’s Association International Conference® 2014 (AAIC® 2014) in Copenhagen.

In two of the studies, the decreased ability to identify odors was significantly associated with loss of brain cell function and progression to Alzheimer’s disease. In two other studies, the level of beta-amyloid detected in the eye (a) was significantly correlated with the burden of beta-amyloid in the brain and (b) allowed researchers to accurately identify the people with Alzheimer’s in the studies.

Beta-amyloid protein is the primary material found in the sticky brain “plaques” characteristic of Alzheimer’s disease. It is known to build up in the brain many years before typical Alzheimer’s symptoms of memory loss and other cognitive problems.

"In the face of the growing worldwide Alzheimer’s disease epidemic, there is a pressing need for simple, less invasive diagnostic tests that will identify the risk of Alzheimer’s much earlier in the disease process," said Heather Snyder, Ph.D., Alzheimer’s Association director of Medical and Scientific Operations. "This is especially true as Alzheimer’s researchers move treatment and prevention trials earlier in the course of the disease."

"More research is needed in the very promising area of Alzheimer’s biomarkers because early detection is essential for early intervention and prevention, when new treatments become available. For now, these four studies reported at AAIC point to possible methods of early detection in a research setting to choose study populations for clinical trials of Alzheimer’s treatments and preventions," Snyder said.

With the support of the Alzheimer’s Association and the Alzheimer’s community, the United States created its first National Plan to Address Alzheimer’s Disease in 2012. The plan includes the critical goal, which was adopted by the G8 at the Dementia Summit in 2013, of preventing and effectively treating Alzheimer’s by 2025. It is only through strong implementation and adequate funding of the plan, including an additional $200 million in fiscal year 2015 for Alzheimer’s research, that we’ll meet that goal. For more information and to get involved, visit http://www.alz.org.

Clinically, at this time it is only possible to detect Alzheimer’s late in its development, when significant brain damage has already occurred. Biological markers of Alzheimer’s disease may be able to detect it at an earlier stage. For example, using brain PET imaging in conjunction with a specialized chemical that binds to beta-amyloid protein, the buildup of the protein as plaques in the brain can be revealed years before symptoms appear. These scans can be expensive and are not available everywhere. Amyloid can also be detected in cerebrospinal fluid through a lumbar puncture where a needle is inserted between two bones (vertebrae) in your lower back to remove a sample of the fluid that surrounds your brain and spinal cord.

Read more

(Image: Getty Images)